EUROPA-UNIVERSITÄT VIADRINA FRANKFURT (ODER) Faculty of Business Administration and Economics Chair of Economic Theory (Microeconomics)

THE EUROPEAN NATURAL GAS SUPPLY, UNDER PARTICULAR CONSIDERATION OF GAS TRANSIT

Ph.D. candidate: Mag. Rostyslav Ruban Supervisor: Prof. Dr. Friedel Bolle

Ph.D. viva examination: Frankfurt (Oder), 25 March 2013

Arguments for the SoS Research

as results from the **European gas market environment**:

• A strong correlation between economic growth and energy consumption (EU-15: r = 0.95, p = <0.0001);

- Ever-increasing peak demand loads for natural gas in the residential sector;
- Permanently declining gas reserves and gas production all over Europe, while import dependency increases;
- Most of the cross-country pipelines (supplying the increased imports) pass through various states with different objectives;
- Country-actors of the supply chain are inclined to conflict.

Research Objective and Research Questions

The research **objective** pursued in the study is:

To describe and evaluate Europe's gas supply security (SoS), as well as to specify prospective ways for the SoS enhancement, with a focus on European infrastructure projects, in accordance with individual countries' needs and priorities.

The research questions, qualified to meet the research objective, are:

- (1) How secure are the European countries in terms of their natural gas supplies?
- (2) How can the gas-SoS in Europe be improved (with emphasis on infrastructure)?

Structure of the Study

The Ph.D. thesis is organised into *three conceptual parts*:

- **Chapter 2** provides an overview of the gas chain fundamentals, the European gas sector, and the nature of conflicts among country-actors of gas transportation. It prepares the background for the detailed SoS discussion.
- **Chapter 3** addresses the **1st** research question. While developing the conceptual framework for SoS and providing the track record of SoS incidents, it <u>constructs</u> **gas security metrics** and <u>evaluates</u> the current SoS situation over Europe.
- **Chapter 4** addresses the **2nd** research question. Via reporting on a real emergency situation and on the infrastructure-related sustainable development patterns of the (predominantly CSEE) gas supply, it <u>applies</u> the developed SoS-indices.

A Quantification Approach Applied (1)

"Energy security is too important a concept to be incoherently defined and poorly measured" (Sovacool & Brown [2010]). "An issue that cannot be measured will be difficult to improve" (Löschel et al. [2010]).

Our **aim** is developing a meaningful synthetic **index** that could help to benchmark and monitor European countries with regard to their SoS state.

The current status of research:

• There is **no unique methodology** to access SoS (cf. Cabalu [2010]) – due to a rather elusive nature and high context dependency of the concept:

- \rightarrow The selection of parameters is left to the taste of the researcher;
- \rightarrow "Indefinitely" many ways exist for the weighting of the selected parameters.

We introduce a set of ten **parameters** comprehensively catching the SoS

- (• physical supply diversification;
- capacity diversification;
- share of gas imports in the TPEC;
- energy intensity;
- reserves situation (home and supplying regions); storage relation and focusing on its accessibility and availability *dimensions*.

- the ease of switching between suppliers;
- offshore risks;
- geopolitical risks;
- fuel-switching possibilities;
- storage relatively to households demand) *dimensions*.

R. Ruban

A Quantification Approach Applied (2)

We test different statistical **approaches** of alternative *weighting* and aggregation [and of parameters integration] to calculate the composite SoSindicator HHI'14:

• The Implicit Weights approach (Neumann [2004], Jansen et al. [2004], Le Coq & Paltseva [2009]) \rightarrow by using the multiplicative combination of unnormalized SoS aspects, introduced on a step-by-step basis;

• The Equal Weights approach (Gnansounou [2008], Cabalu [2010], Reymond [2012]) \rightarrow by unifying the scales on which the SoS parameters are measured and aggregating them as the root mean square (RMS);

• Gupta's [2008] approach \rightarrow by adjusting the weights of correlated relative variables using the principal components analysis (PCA) and aggregating them after Gupta [2008].

- Data **comparisons** in respect of: The "N-1" approach $(N 1_B = \frac{P_m + S_m + LNG_m + IP_m I_m}{D_{max} D_{eff}} \times 100)$ proposed by the EU Commission (cf. OJL [2010]);
- Selected SoS metrics proposed by other researchers.

Empiric Value of the Study

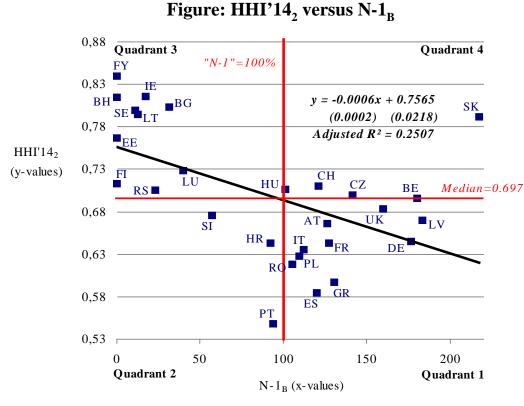
The real **challenge** for SoS-indices seems to be their predictive ability – which has never been tested before.

"Composite indicators often measure concepts that are linked to well-known and measurable phenomena [...]. These links can be used to test the explanatory power of a composite. [...] Attempts should be made to correlate the composite indicator [...]" with such measurable phenomena (Nardo et al. [2008]).

 \Rightarrow The **focus** of this study's attention is, thus, on exploring the **applicability/usefulness** of the indices.

Academic novelty: We check (for policy decisions) the predictive success of SoS indices by conducting three tests:

Test #1: Clarifying whether the indices reflect the economic losses in the Jan. 2009 disruption in gas supply;


Test #2: Testing whether a relationship exists to the EEPR funding;

Test #3: Demonstrating how the energy situation (and, hence, SoS-indices) improves being driven by the EU-initiated infrastructure projects.

Target goal: Gaining insights into the indices adequacy as a policy tool for present and future energy security developments.

Findings - 1(a): "How secure are the European countries in terms of their gas supplies?"

(a) Results of the SoS calculation:

Table: Correlation between SoS-indices and N-1_B

SoS-index	Correlation	<i>p</i> -value
HHI'14 ₁	-0.5207	0.0045
HHI'14 ₂	-0.6910	< 0.0001
HHI'14 ₃	-0.6540	0.0002
HHI'14 ₄	-0.4368	0.0201
HHI'14 ₅	-0.7132	< 0.0001
Neumann [2004]	0.2468	0.6373
Scheepers et al. [2007]	0.0788	0.7207
Röller et al. [2007]	0.0312	0.8931
Gnansounou [2008]	-0.0726	0.7302
Le Coq & Paltseva [2009]	-0.1405	0.5330
Ramboll [2010]	0.8066	< 0.0001
Sovacool & Brown [2010]	-0.3331	0.2662
N-1 _B (%)	1	

Proposition: It is sensible to evaluate SoS by two families of indices:

- **HHI'14s** describe the **average** ability of a country to cope with supply disruptions (i.e., with big and small ones and of <u>any kind</u>);
- "N-1"s address the largest single risk in the system and describe a "worst case scenario".

Findings - 1(b): "How secure are …"

(b) Testing the explanatory power of the SoS-indices:

TEST #1: Confronting of SoS-indices with the Supply Disruption Costs \rightarrow *Data*

	Jan.2009 gas import cut (%)	"Specific Jan.2009 disruption losses" (relatively to GDP)	Industrial production index (% change, Jan.2009 to Jan.2008)
Bulgaria	100	0.017	-22.6
Bosnia	100		-11.1
Macedonia	100		-19.3
Serbia	100	0.005	-25.5
Slovakia	97	0.040	-31.6
Greece	80		-14.8
Czech Rep.	71	0	-23.8
Austria	66	0	-11.7
Slovenia	50	0	-16.9
Hungary	45	0.002	-23.5
Croatia	40	0.012	-13.9
Romania	34		-18.5
Poland	33		-13.9
Italy	25		-20.4
France	15		-19.0
Germany	10		-20.1

TEST #2: Confronting of SoS-indices with the EEPR Funding \rightarrow *Data*

	"Specific country funding within the EEPR" (relatively to GDP)		"Specific country funding within the EEPR" (relatively to GDP)
Austria	0.09	Bulgaria	7.28
Belgium	0.50	Czech Rep.	0.75
Finland	0	Estonia	0
France	0.27	Hungary	2.63
Germany	0	Latvia	0.97
Greece	0.61	Lithuania	0.19
Ireland	0	Poland	0.87
Italy	0.17	Romania	1.84
Luxembourg	0	Slovakia	0.28
Portugal	0.12	Slovenia	1.91
Spain	0.08		
Sweden	0		
UK	0		

Findings - 1(b): "How secure are …"

TEST #1: SoS-indices Vs. the Supply Disruption Costs \rightarrow *Results*

SoS-index	"Specific" losses		Industrial production index	
	Correlat.	<i>p</i> -value	Correlat.	<i>p</i> -value
HHI'14 ₁	0.3143	0.4483	-0.0296	0.9132
HHI'14 ₂	0.7729	0.0245	-0.3586	0.1726
HHI'14 ₃	0.7004	0.0530	-0.2589	0.3330
HHI'14 ₄	0.3406	0.4090	-0.0082	0.9760
HHI'14 ₅	0.7216	0.0433	-0.4052	0.1195
N-1 _B (%)	-0.5359	0.1710	0.1663	0.5382
Neumann [2004]	_	_	0.0740	0.9529
Scheepers et al. [2007]	0.4339	0.3900	-0.0170	0.9581
Röller et al. [2007]	0.5842	0.3010	-0.5295	0.1155
Gnansounou [2008]	-0.2549	0.5812	0.1348	0.6606
Le Coq & Paltseva [2009]	0.6662	0.1485	-0.6752	0.0160
Ramboll [2010]	0.3012	0.5618	-0.0211	0.9482
Sovacool & Brown [2010]	_	_	-0.6979	0.1901

 $\Rightarrow We weakly supported the$ hypothesis that European nations
with "good" SoS scores have
suffered smaller losses in the Jan.
2009 gas crisis than those with
"bad" scores. (This result is based,
however, on a small sample of
countries for which economic losses
have been estimated.)

 \Rightarrow Figures of reduced industrial production as the consequence of the 2009 gas crisis did not show significant relation to any of the HHI'14s.

 \Rightarrow Also in terms of "N-1", no significant relation could be found.

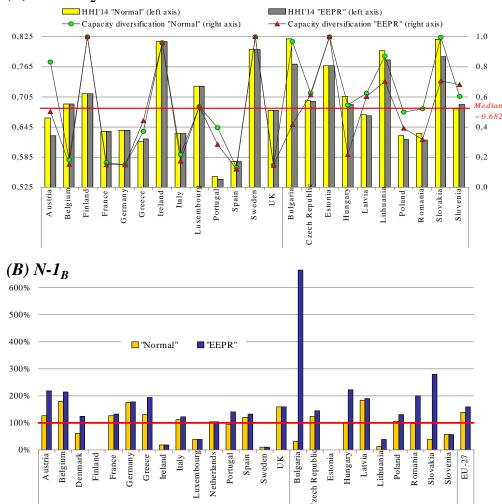
Findings - 1(b): "How secure are …"

TEST #2: SoS-indices vs. the EEPR Funding \rightarrow *Results*

SoS-index	Correlation	<i>p</i> -value
HHI'14 ₁	-0.0767	0.7278
HHI'14 ₂	0.2008	0.3583
HHI'14 ₃	0.3708	0.0815
HHI'14 ₄	-0.1263	0.5657
HHI'14 ₅	0.1983	0.3643
N-1 _B (%)	-0.1117	0.6120
Neumann [2004]	0.2437	0.6417
Scheepers et al. [2007]	-0.0467	0.8325
Röller et al. [2007]	0.0574	0.8046
Gnansounou [2008]	0.1866	0.3940
Le Coq & Paltseva [2009]	0.3128	0.1563
Ramboll [2010]	-0.1050	0.6335
Sovacool & Brown [2010]	0.1534	0.6341

 $\Rightarrow The conjecture that the EU$ nations with "worse" SoS scores
might have enjoyed stronger
EEPR subsidies could not be
supported for the SoS-indices.

(Since a correlation of some of the indices with the amount of losses in a gas crisis has been discovered, this puts in doubt the efficient distribution of EEPR funds.)


Other essential **findings** of the study:

- Small European nations suffer from lower SoS than large ones;
- Central/South-East Europe (CSEE) suffers from lower SoS than the EU-15.

Findings - 2: "How can the gas-SoS be improved?"

Figure: The SoS "Normal" Vs. "EEPR" Calculation

(A) HHI'14₂

(1) Due to SoS-enhancing infrastructure projects. The measurable impact of the EEPR on EU's security (TEST #3) can thus be calculated:

 \Rightarrow Investment in infrastructure, made after the gas cut of Jan. 2009, resulted that a number of EU member states have improved their SoS scores (HHI'14 and "N-1").

(2) Due to a progressive unification of gas networks in Europe:

⇒ NETS ("New Europe Transmission System");

 \Rightarrow ETSO (European Transmission System Operator).

Discussion

• The proposed indices **HHI'14** integrate key characteristics of gasconsuming and -supplying countries. They, thus, promise to grasp a country's SoS situation the best. This may be an important step for improving the understanding of the *multifaceted* concept of SoS.

• Based on our **findings**, the study has concluded that the SoS-indices *somewhat* favoured the ability to explain measurable SoS-relevant phenomena (like supply problems or economic losses). This was, however, <u>insufficient</u> to firmly recommend their **adoption by policymaking**.

• **Further work** is definitely worthwhile. One needs to produce more evidence of the *applicability/usefulness* of the SoS-indices.

• SoS-indices clearly are rather important for a quick and coherent overview over the state of SoS for a large and diversified region like Europe. They <u>cannot</u> completely substitute, however, a detailed discussion of the SoS situation in each member state.

Thank you for your attention!